Historical Unit Browser Overview

Bill Ferster

The Historical Unit Browser (HUB) allows users to interactively browse historical events in a number of ways. It is a generative browser, allowing users to not only view preset collections of events, but to construct their own views of the events based on selected criteria. HUB makes it easy to construct complex queries about historical events, weaving maps, timelines, and data visualizations to encourage insight.

HUB is a tabbed-based collection of views of historical events and data that can be interactively shown within a time period using the timeline tool. Views can contain event descriptions, primary source documents and imagery, maps, digital movies and audio, animations, charts and graphs of historical data.

Each view represents the result of choices of what to show in that view. The views can show events that match certain criteria, ranging from “show all events in Antioch, Virginia” to a sophisticated query such as “show all events where Jefferson bought more than 3 trees from 1796 to 1820, but not ones from Thomas Mayne.”

These views can be fixed for demonstration purposes, or left open, for people to explore various relations between the elements provided allowing for both purposeful and serendipitous discovery of complex interrelations.

[image: image1.jpg]Welcome to Delmarva John Smith's Journey Frederick Douglass' World

Wilmington, DE

¥ Geography
O show rivers
\ O Show roads
a A \ O show towns.
Havre.de Grace, MD Map Features
f \ - Eish i
& show legend
& Show graph
v searen
—
@ron
O pice

O Thing
S ey
S

Map Legend

B Schools

B Closed Schools
st offices

=13

Resources Supported

There are three basic kinds of information (resources) HUB can display and search for:

1. Historical events which contain information about a particular event such as the date, title, brief descriptive narrative, NCSS standards, links to primary source documents and imagery, location information (latitude and longitude) and key words that help aid finding events. The source of the card’s data comes from any database. A translation layer (lens) provides a mechanism to convert data in its native format into the internal format.

2. HUB contains a fully interactive geographic information viewer to display three basic kinds of maps. 1) Scans of historical maps, 2) vector-based maps from GIS systems such as arcGIS, and 3) maps delivered from Internet-based web services, such as Google Maps. All maps can be easily panned and zoomed, with an option to see an overview inset. Shape data can come from specified tables in a SQL/mySQL database, a link to an XML file, or from Internet-based web service.

3. A rich array of historical data can be imported into HUB from a database as a table. This data can be displayed as a layer on a map, shown as a chart, table, or graphic element, and most importantly, used to include or omit events in the views. Data can come from specified tables in a SQL/mySQL database, a link to an XML file, or from Internet-based web service.

View Constructor

An unlimited number of views can be constructed from these three basic resource elements. Views can be interactive, enabling users to change how the various resources interact, or static, allowing for a didactic interpretation of the events.

The infrastructure for a view contains a procedural description of how the information is displayed with conditional comparisons and loops so that very sophisticated queries can be performed. These queries are easily constructed using pull down menus for the various options desired indicating the relationships between the various resources.

ControlPanels
Each View has its own pull-out area docked to a side of the screen that can be expanded or collapsed as needed and contains a number of collapsible check boxes to toggle on and off various features of the map, such as data overlays, roads, rainfall, town names, etc. Various map features, such as the overview navigation insert and map legend can be turned on and off here as well.

Designers can elect to allow users to add their own views, and even change (during their session only) factors in existing views. The presence or absence of the items in this drawer is easily controlled by setting options in the view constructor described above.
Annotations and Graphs
Areas on the map can be identified by to highlight particular sections, provide clickable links to pull up a web page, draw graphical elements, or popup window showing some information:

1. A particular section of the map can be highlighted by overlaying a rectangle, ellipse, or circle surrounding a particular latitude and longitude. This shape can darken, lighten, tint, or texture the underlying area, and can be dynamically positioned and sized based on data query relationships.

2. Graphical elements such as lines, boxes, arrows, etc. can be drawn using a latitude and longitude positions and can be dynamically positioned and sized based on data query relationships.

3. Links can be assigned to cause a webpage to open in a new browser window when the area within a particular latitude, longitude, and radius is clicked.

4. A popup window can open when the area within a particular latitude, longitude, and radius is clicked. This popup can contain text, graphics, table data, charts and graphs, movies, audio, or images. The contents of the popup are dynamically defined by the data query relationships.

HUB Schema

The Historical Event Browser (HUB) is an empty vessel for interacting with historical information. Its entire functionality and “look and feel” is controlled by an XML data structure. This flexibility will allow it to be effectively used in a wide variety of projects, while still maintaining a common internal structure. The HUB’s XML data structure is centered on a number of key objects:

Project / Browser
The topmost level on the hierarchy is the project. The project contains any number of browsers and timelines. This will allow for multiple interactive representations to be shown simultaneously, making for easy comparisons, with a shared timeline for control.

View
Each browser may contain any number of views. These views are represented as tabbed areas on the screen. Clicking on any of the tabs will bring up a different view. Each view contains descriptors of the resource to display, or use as data to change the display. There is one timeline for each view, which makes it easy to set the temporal aspect of that view.

· Resource
The resource could be a map, some media, a table of data, or a graphic. Each resource item contains a query instruction as how to find the data for that resource. For example, a map may be a URL to a bitmap, a SQL query for a collection of shape files in a database, or a URL to an online web service, such as Google maps. A data table from a SQL database, from an XML file or a web service can be similarly used.

· Glue
Glue (The General Language to Unite Events) is a procedural description of how the various resource elements connect with one another and are displayed. HUB knows how to render a number of types of resource, such as tables, charts, text area, movies, audio clips, vector and raster maps, and the Glue language contains elements to cause them to display. The Project and ControlPanel rely on Glue to know how to display the views and sub-views.
Glue also contains elements for linking user-generated actions, such as clicking on the screen with actions. Glue also provides an opportunity to calculate tables and fields in resources based on a simple script in the tag. Many common types of operation can be defined between these elements, so that HUB is able to relate rich data relationships between them and visualize them on a special and temporal basis.

· ControlPanel
Each view contains an control panel that can be populated with a number of interface items, such as checkboxes, radio buttons sliders and header elements. This panel can be docked anywhere in the view or be free-floating. It can be always present, or opened and closed like a drawer.

HUB XML SCHEMA

<project title=”name” >

// Topmost level

<logo top=”pixels” right=”pixels” source=”url” />

// logo

<textFormat> textformat </textFormat>

// default text attributes

<browser> browser </browser> … *

// browser object(s)

<timeline> timeline </timeline>

// to control > 1 browser

</project>

<browser title=”name” >

// Browser object

<textFormat> textformat </textFormat>

// default text attributes

<frame> frame </frame>

// frame of browser

<tab

// defines tabs

 onCol=”0xrgb” offCol=”0xrgb”

// color of active/inactive tabs

 onTextCol=”0xrgb” offTextCol=”0xrgb”

// text color tabs

 hgt=”pixels” wid=”pixels” />

// size of tabs

<view > view_1-n </view> …

// tabbed view(s)

</browser>

<view title=”name” >

// Tabbed views of data

<textFormat> textformat </textFormat>

// default text attributes

<resource> resource </resource> …

// resources(s) for this view

<controlPanel> controlPanel </controlPanel> …

// control panel(s) for view

<timeline> timeline </timeline>

// timeline for this view

<glue> glue </glue>…

// connection mapping

<graph> graph </graph>…

// graph display

<zoomControl

// zoom control for view

top=”pixels” left=”pixels”

// position (omit to dock it)

def=”number”

// starting value

max=”number”
 />

// max zoom (% /100)

<overview

// overview navigation control

 docking="[botLeft | topLeft | botRight | botLeft]"
// docking

wid="pixels:100" boxCol="0xrgb" />

// width and box color

 src="inset.jpg" />

// inset map image

</view>

 * Italics indicate link to another XML object

 … indicates there may be multiples of these objects

underlined option in [multiple | choices] indicates default

<controlPanel title=”name”

// Control panel for views

<frame> frame </frame>

// box of control panel

canEdit=”[true | false]”

// enable view editing button

canDelete=”[true | false]”

// enable view deleting

canAddNewView=”[true | false]”

// enable adding of new view

closable=”[true | false]”

// enable panel closing tab

open=”[true | false]”

// panel closing startup status

<textFormat> textformat </textFormat>

// default text attributes

<item> …

// each line in the panel

type=”[checkbox | radio | slider | textbox | header l legend]” // type of item

def=”value” *

// default value/state of item

title=”name”

// name of item to show

bold=”[true | false]” italic=”[true | false]”

// is text bold or italic

glue> glue </glue> **

// glue object to run if clicked

min=value max=”value”

// slider only- min/max values

maxChars=”number”

// textbox only

</item>

</controlPanel>

<timeline>

// Timeline controller

min=”years | days” max=”years | days”

// dates (leading 0 for days¹)
start=” years | days” end=” years | days”

// current slider dates

dateFormat=”[yr | mo/yr | dy/mo/yr | mo/dy/yr | daily]”
// default date format

col=”0xrgb” wid=”pixels:0”

// color and line width

majorTick=”pixels:0”

// major tick make length

minorTick=”pixels:0”

// minor tick make length

showValues=”[true | false]”

// show values

valueCol=”0xrgb”

// color of values

player=”[true | false]”

// show play button

speed=”[true | false]”

// show play speed controller

<textFormat> textformat </textFormat>

// specific text attributes

<frame> frame </frame>

// box of timeline

<slider>

// style of timeline slider

style=”[single | dual]“

// one date or start/end date

canMove=”[true | false]”

// fixed or movable

</slider>

</timeline>

 *legends can specify bitmap icons in the def attribute

**built-in glue objects ”legend” & “inset” toggle on/off if in a “checkbox”
¹Specifying date at 0664669 will represent January 4, 1821 in days

<textFormat id=”name”

// Defines text formatting

color=”0xrgb”

// text color

alpha=”opacity”

// 0-100 opacity

size=”pixels”

// size

bold=”[true | false]”

// bold

italics= [true | false]”

// italics

face=”[_sans | _serif | _fixed | specificFont]“

// font face

slant=”degrees”

// orientation in degrees

leading=”pixels”

// total height between lines

align=”[left | right | center | justify]”

// horizontal alignment

</textFormat>

<frame id=”name”

// Holds visual items
id=”name”

// frame’s id

title=”name”

// title of frame

wid=”pixels” hgt=”pixels” top=”pixels” left=”pixels”

// size and position

corner=”pixels”

// for rounded rectangles

alpha=”opacity”

// 0-100 opacity

docking=”[left | right | top | bottom]”

// docking mode

backCol=”0xrgb”

// interior color

frameCol=”0xrgb”

// color of frame

frameWid=”pixels”

// width of frame

</frame>

<shapedata

// Shape object

col=”0xrgb”

// default interior color

edgeCol=”0xrgb”

// default color of edge

edgeWid=”pixels”

// default edge wid (0=none)
variable=”view_property” >

// variable in view to animate

<polygon | polyline | arrow | text

// element id

id=”name”

// name of element

xy=”xydata”

// cords (x,y; … x,y;)

col=”0xrgb” edgeCol=”0xrgb” edgeWid=”pixels />
// color info
</shapedata>

<keyFrame>

// KeyFrame object

variable=”view_property”

// variable in view to animate

ease=”[none | in | out | both]”

// how animation eases in/out

start=”time” end=”time”

// start and end positions

start=”time”

// start time of key

duration=”time”

// duration until next key

</keyFrame>

RESOURCES

Resources contain information to be used by HUB. This information is most often a table of data, but can be an interactive vector map, text, images, animation, movies, audio, charts, and graphs. Resources are the raw material for HUB views.

The <resource> tag in the project file provides a way to identify sources and provide named access to the data they contain. This access is useful because once they have been identified; we can refer to them by name later on using lines of Glue to easily create complex visualizations.

<resource id=”name” >

// Resource object

type=”[data | map | image | graph | table | movie | audio]”
// media type

src=”url[/db:table]”
auth=”authorization”

// web address of resource

query=”sql”

// actual SQL query

src=”url[/db]”

// web address of resource

query=”sql”

// actual SQL query

store=”[live | new | local]” *

// data storage options

normalize=” [0-1 | 0-10 | 0-100 | 0-1000 | -1-1]”

// data normalization

xy=”x[0],y[0]; x[1],y[1];… x[v],y[n]”

// xy data

<field id=”name” type=”[number | string]” />…
// named fields in resource

</resource>

Perhaps the simplest kind of resource is an image file, which might contain an image to display. The following line identifies an image on the server, loads it for future use, and makes it available to be instantly shown by referring to it by the name “myPic.”

<resource id=”myPic” type=”image” src=”http://virginia.edu/mypic.jpg” />

Getting data from a database is a little more involved. Say we wanted to access a table that contained two fields: ‘cityList’ and ‘popVal’ in a table called ‘migration_tb’. To access that data a local mySQL database:

<resource id=”migration” type=”data” store=”live”

src=”db.virginia.edu/myDB:my****word
query=”SELECT * FROM ‘migration_tb’” >

<field id=”city” name=”cityList” type=”string” normalize=”0-1” />…
</resource>

The data can exist in any number of places such as a mySQL database table, XML file, text file, or dynamic web service.

* live accesses the data executing the query each time,

local makes a local copy in the browser’s memory,

new creates a new table on the server

GLUE

Glue is used to connect the data resources described above to data consumers such as display tables, popup windows, charts, and data-driven maps.

Glue is written as a series of lines of text in the XML file that drives the HUB project. A view may contain any number of lines of Glue and each line has an id, or name, so you can string together multiple lines, or cause a line to execute from an item in an control panel.
Glue also provides an opportunity to calculate tables and fields in resources based on a simple script in the tag. Many common types of operation can be defined between these elements, so that HUB is able to relate rich data relationships between them and visualize them on a special and temporal basis.
<glue
id=”name”

// Connection mapping

init=”[true | false]”

// run glue at startup?

from=”resource(s)”

// input resources

to=”[screen | popup | graph]” >

// where to place output
<![CDATA[

// script start
calculation script

// calculation script (optional)
]]>

// script end

</glue>
The from attribute specifies what resource to display to attributes says where to place the results. From takes a resource id and to is specified as going to the viewing screen, or a popup window atop the viewing screen. If only a calculation between data elements is wanted, from and to can be empty. Setting the init attribute to true will cause the glue element to be executed at startup.
CALCULATION

The ability to add a calculation script provides an opportunity to calculate tables and fields in resources based on a simple script in the tag. Many common types of operation can be defined between these elements, so that HUB is able to relate rich data relationships between them and visualize them on a special and temporal basis
Some resources have built in tables. Vector maps automatically have a table with three fields- “col”, “alpha”, and “label.” There is a line for each feature on the map controlling that feature’s color, opacity, and name. Other items, such as timelines, contain fields for the minimum, maximum, and current date (min, max, now).

For example suppose we had a table named “popTab” which contained the fields “county” and “pop.” Also suppose also had a vector map, containing showing all the counties and wished those counties to be colored according to their population, we could do the following:
Define a resource to get the population data from an XML file:
<resource id=”myData” type=”data” src=”http://mysite.com/pop1845.xml” />
Define a resource to get the arcGIS converted vector map from an XML file:
<resource id=”myMap” type=”map” src=”http://mysite.com/myMap.xml” />

Define some glue to connect the map to the screen, and change the map’s internal color table based on population data from the data resource:
<glue from=”myMap” to=“screen” init=”true”>
<![CDATA[

list(slots,0,25,50,75)

list(colors,0xffffff,0x110000,0x330000,0x990000,0xff0000)

segment(myData,slots,myMap.col,colors)

]]
</glue>

There are three lines used in this script. The first two are list creators, with the first creating a list of number that will determine which population numbers should be grouped together called slots. The second list, called colors, contains the colors the categories will use when drawn. The final line contains a method called segment, which take 4 parameters; the data source, the criteria by which the data will be clustered, the destination where to write the results, and the
Actual.

SCRIPTABLE METHODS

LIST

This method will create an array of elements (numbers, colors, or strings) under a named id for use in other methods.

list(id,element1, element2, … elementN)

id:String

Name of list

element:[number | color | string] …
List element(s)

The example below will create a list of four numbers and makes that list available to other methods under the ID name called slots.
list(slots,0,25,50,75)

SEGMENT
This method will sort data into a number of preset categories and use those as criteria to create a new list.
segment(sourceID, destID, filters, values)

sourceID:String

ID of source data resource
destID:String

ID of destination data resource

filters:String

ID of list of numbers to segment data
values:String

ID of list of values to assign segmented data

As an example, suppose we wanted to color a map so that populations of different area are drawn in different colors. Areas with no people should be colored white, populations from 0-25 colored light red, 25-50 medium red, 50-75 red, and population greater than 75 colored bright red:

list(slots,0,25,50,75)

list(colors,0xffffff,0x330000,0x990000,0xff0000)

segment(myData.pop, myMap.col, slots, colors)

MOVE
This method will move a resource over time. If the timing is set to null, the resource will always be positioned at the starting positions specified.

move(resourceID, startX, startY, endX, endY, timing, eases)

resourceID:String

ID of resource

startX:Number

starting horizontal position

startY:Number

starting vertical position

endX:Number

ending horizontal position

endY:Number

ending vertical position

timing:String

ID of timing source (i.e. timeline, var, null)

eases:Number

motion slows (0=none1=start 2=end 3=both)

TWEEN
This method will set a resource field to some position over time. If the timing is set to null, the resource will always be positioned at the starting positions specified.
tween(fieldID, start, end, timing, eases)

fieldID:String

ID of field, with ’.’ modifiers
start:Number

starting value
end:Number

ending value

timing:String

ID of timing source (i.e. timeline, var, null)

eases:Number

motion slows (0=none1=start 2=end 3=both)

SCRIPTABLE RESOURCE FIELDS
Images

Standard MovieClip properties

// Flash MovieClip properties
Movies/Audio

Standard MovieClip properties

// Flash MovieClip properties

start stop volume

// play times and volume

Vector Maps

Standard MovieClip properties

// Flash MovieClip properties

col[]*

// feature interior color table

alpha[]

// feature alpha table

col[]

// feature interior color table

label[]

// feature label name table

Graphs

Standard MovieClip properties

// Flash MovieClip properties

highStart

// start of highlight in (0-1)

highWid

// width of highlight in pixels

data#[]
…

// data set table (# = 1-8)
Data

data#[]
…

// data set table (# = 1-8)

Shape

Standard MovieClip properties

// Flash MovieClip properties

x[]

// x coordinate table

y[]

// y coordinate table

timeline
min max now

// range and current time

screen

// Flash MovieClip properties

zoom

// zoom control (0-100)
Standard MovieClip Properties
_x / _y:Pixels

// horizontal / vertical position

_width / _height

// width / height

_alpha:Opacity

// 0-100

_rotation:Degrees

// 0-360
 * [] indicates a list (array) of items
 … indicates there may be multiples of these object
DATA GRAPHING
<graph id=”name”

// Graph object

title=”name”

// title of graph

subtitle=”name”

// subtitle of x axis

highStart=”number”

// start of highlight 0-1

highWid=”pixels”

// width of highlight bar

type=”[bar | line | area | scatter | pie]”

// type of graph

border=”pixels”

// space around data area

<legend show=”[true | false]” dock= “[top | bot | left | right]” />
// show legend

<textFormat> textformat </textFormat>

// specific text attributes

<dataset num=”number” marker=”marker” title=”name” />… // data set info

<xAxis> axis </xaxis>

// X axis

<yAxis> axis </yaxis>

// Y axis

</graph>
<marker id=”name” >

// Marker object

type=”[bar | box | triangle | dot | line | image.jpg]”

// type of marker

col=”0xrgb”

// color

size=”pixels”

// size of marker

showValues=”[true | false]”

// show data values

<textFormat> textformat </textFormat>

// specific text attributes

</marker>
<xAxis> / <yAxis>

// Axis objects

title=”name”

// axis title

col=”0xrgb” wid=”pixels”

// color and line width
majorTick=”pixels”
minorTick=”pixels”

// major/minor tick lengths
grid=”[true | false]”

// show gridlines

valueCol=”0xrgb”

// color of values, if any
min=”number” max=”number”
 mod=”number”

// data range and mod
<textFormat> textformat </textFormat>

// specific text attributes

</xAaxis>
TABLES

<table
id=”name”

// Table object

title=”name”

// title of table
subtitle=”name”

// subtitle

style=”[plain | altRow | altlCol]”

// style of table

altCol=”0xrgb”

// color to alternate rows/cols
cHeader=”string”

// CSV column headers

cHeaderCol=”0xrgb”

// color, if any of header line
cHeaderHgt=”pixels”

// size of header divider
rHeader=”string”

// CSV row header

rHeaderCol=”0xrgb”

// color, if any of header line
rHeaderWid=”pixels”

// size of header divider
data1...N=”data” …

// CSV column data
rLine=”0xrgb”

// color, if any of row lines

cLine=”0xrgb”

// color, if any of column lines
<textFormat> textformat </textFormat>

// specific text attributes

</table>
NOTES:

1. The style can set up an alternating color on a row by row or column by column basis. For example, background color of odd-numbers column is drawn the color spec’d by altCol if the style is set to “altCol.”

2. Number of columns is set by cHeader elements. Number of rows is set by rHeader elements. For example, cHeader=”,Age,Sex,Race” sets up four columns, with a blank initial column header .
3. The column or row header’s dividing line is set to color the hat header’s background area by setting the cHeaderHgt or rHeaderWid to 0
DRAWING ELEMENTS

<path
id=”name”

// Path object

col=”0xrgb”

// color of inter-dot lines
wid=”pixels:0”

// width of lines (0 = none)
alpha=”opacity:100”

// 0-100 opacity
showAllDots=”[true | false]”

// show all dots always

tweenLines= ”[true | false]”

// animate line between dots

<textFormat> textformat </textFormat>

// specific text attributes

<dot> dot </dot> …

// marker dots

</path>

<dot
id=”name”

// Dot marker object

col=”0xrgb”

// color of dot maker
wid=”pixels:0”

// width of dot marker
alpha=”opacity:100”

// 0-100 opacity
style=”[bar | cir | triu | trid | tril | trir]”

// shape of dot marker
x=”pixels” y=”pixels”

// location for dot marker
time=”pct”

// time, normalized 0-1

label=”string”

// label for dot marker

glue=”glue”

// glue to activate if clicked
</dot>
NOTES:

1. A path holds a series of dots, which can have lines connecting them. These lines and dots can be drawn over time based on the position of the timeline.
2. Dots will continue using properties set in previous dots to reduce unnecessary repeating of attributes. For example, if you set the style to “triu” (up-facing triangle), all dots that follow would be rendered as “triu” until re-specified.

3. The time attribute of a dot tells when that dot will be draw. 0 is at start, .5 is middle, 1 is end, etc.

4. Clicking on a dot will cause a GLUE element to run if there is one specified, allowing you to trigger other actions and displays.
PAGE
17
Draft 5/14/07

